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Abstract

This paper presents approximation methods for time-dependent thermal radiative transfer
problems in high energy density physics. It is based on the multilevel quasidiffusion method
defined by the high-order radiative transfer equation (RTE) and the low-order quasidiffusion
(aka VEF) equations for the moments of the specific intensity. A large part of data storage
in TRT problems between time steps is determined by the dimensionality of grid functions
of the radiation intensity. The approximate implicit methods with reduced memory for
the time-dependent Boltzmann equation are applied to the high-order RTE, discretized
in time with the backward Euler (BE) scheme. The high-dimensional intensity from the
previous time level in the BE scheme is approximated by means of the low-rank proper
orthogonal decomposition (POD). Another version of the presented method applies the
POD to the remainder term of P2 expansion of the intensity. The accuracy of the solution of
the approximate implicit methods depends of the rank of the POD. The proposed methods
enable one to reduce storage requirements in time dependent problems. Numerical results
of a Fleck-Cummings TRT test problem are presented.

Keywords: high-energy density physics, Boltzmann equation, radiative transfer, implicit
schemes, memory reduction, proper orthogonal decomposition, multilevel methods

1. Introduction

We consider the thermal radiative transfer (TRT) problem in 1D slab geometry that is
defined by the time-dependent radiative transfer equation (RTE)

1

c

∂Ig
∂t

(x, µ, t) + µ
∂Ig
∂x

(x, µ, t) + κg(T )Ig(x, µ, t) = κg(T )Bg(T ) , (1)

x ∈ [0, X] , µ ∈ [−1, 1] , g ∈ N(G) , t ≥ t0 ,

Ig|µ>0
x=0

= I in+g , Ig| µ<0

x=X
= I in−g , Ig|t=t0 = I0g , (2)

and the material energy balance (MEB) equation

∂ε(T )

∂t
=

G∑
g=1

κg(T )
(∫ 1

−1
Ig(x, µ, t)dµ− 2Bg(T )

)
, T |t=t0 = T0 , (3)
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where Ig is the group specific photon intensity; x is the spatial position; µ is the direction
cosine of particle motion; g is the index of photon frequency group; N(G) = {1, . . . , G}; t
is time; κg is the group opacity; T is the material temperature; ε is the material energy
density; Bg is the group Planck black-body distribution function.

The solution of the multigroup RTE in general geometry depends on 7 independent
variables. Temporal discretization schemes for the RTE involve the discrete solution at
the previous time level. This requires storing in memory 6-dimensional grid functions that
approximate the transport solution on a given mesh in the phase space. There are different
approaches for developing approximate methods for time-dependent transport problems that
reduce memory requirements [1, 2, 3, 4, 5]. The α-approximation of the intensity in time
reduces the RTE to a transport equation of steady-state form with a modified opacity [1].
This approximation assumes that the intensity varies exponentially over each time interval.
The approximate rate of change in time can be obtained by means of the solution of low-
order moment equations. As such, the α-approximation rids one of the need to store the
high-dimensional solution from the previous time level [1]. This approximation method for
the time-dependent RTE demonstrated good accuracy in TRT problems [6, 7]. Analysis
showed that there are some limitations for the RTE in the α-approximation [4].

Recently, approximate implicit methods with reduced memory for the time-dependent
Boltzmann transport equation have been proposed [5]. They use the modified backward
Euler (MBE) time integration scheme that applies the proper orthogonal decomposition
(POD) of the transport solution from the previous time step to compress the data and reduce
memory requirements [8, 9, 10]. The accuracy of the method depends on the order of the
low-rank POD of the discrete transport solution. The error decreases as rank increases. In
this paper, we apply the MBE scheme within the framework of the multilevel quasidiffusion
(MLQD) method for solving TRT problems [6, 11, 12].

The reminder of the paper is organized as follows. In Sec. 2, the MLQD method with
approximate implicit scheme is formulated. In Sec. 3, we present different approximations
of the specific intensity by means of the POD. The numerical results are presented in Sec.
4. We conclude with a discussion in Sec. 5.

2. The MLQD Method with Approximate Implicit Scheme for the High-Order
Problem

2.1. MLQD Equations and Discretization

The MLQD method is defined by a system of equations consisting of

1. the multigroup high-order RTE (Eq. (1))

1

c

∂Ig
∂t

+ µ
∂Ig
∂x

+ κgIg = κgBg , (4)

2. the multigroup low-order quasidiffusion (aka VEF) equations for the group radiation
energy density and flux [11, 13]

∂Eg
∂t

+
∂Fg
∂x

+ cκgEg = 2κgBg , (5a)
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1

c

∂Fg
∂t

+ c
∂(fgEg)

∂x
+ κgFg = 0 , (5b)

where

fg =

∫ 1

−1 µ
2Igdµ∫ 1

−1 Igdµ
(5c)

is the group QD (Eddington) factor,

3. the effective grey low-order quasidiffusion (LOQD) equations for the total radiation
energy density and fluxes

∂E

∂t
+
∂F

∂x
+ cκ̄EE = cκ̄BaRT 4 , (6a)

1

c

∂F

∂t
+ c

∂(f̄EE)

∂x
+ κ̄|F|F + η̄E = 0 , (6b)

where the spectrum averaged opacities and factors are defined by

ᾱH =

∑G
g=1 αgHg∑G
g=1Hg

, η̄ =

∑G
g=1(κg − κ̄|F |)Fg∑G

g=1Eg
, (7)

4. the MEB equation (3) in grey form

∂ε(T )

∂t
= c
(
κ̄EE − κ̄BaRT 4

)
. (8)

We discretize the equations of the MLQD method by the backward Euler (BE) time
integration scheme. This yields the semi-discrete RTE at the n-th time level given by

1

c∆tn
(
Ing − In−1g

)
+ µ

∂Ing
∂x

+ κn
g I

n
g = Qn

g , (9)

where ∆tn = tn − tn−1 is the n-th time step, Qn
g = κg(T n)Bg(T

n). The high-order equation
(9) is discretized in space by the step characteristic (SC) scheme. The multigroup LOQD
equations discretized in time by the BE scheme have the following form:

1

∆tn
(
En
g − En−1

g

)
+
∂F n

g

∂x
+ cκn

gE
n
g = 2Qn

g , (10a)

1

c∆tn
(
F n
g − F n−1

g

)
+ c

∂(fng E
n
g )

∂x
+ κn

gF
n
g = 0 , (10b)

fng =

∫ 1

−1 µ
2Ing dµ∫ 1

−1 I
n
g dµ

. (11)

The grey LOQD and MEB equations approximated with the BE scheme are defined by

1

∆tn
(
En − En−1)+

∂F n

∂x
+ cκ̄n

EE
n = cκ̄n

BaR(T n)4 , (12a)
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1

c∆tn
(
F n − F n−1)+ c

∂(f̄nEE
n)

∂x
+ κ̄n

|F|F
n + η̄nEn = 0 . (12b)

1

∆tn
(
ε(T n)− ε(T n−1)

)
= c
(
κ̄n
EE

n − κ̄n
BaR(T n)4

)
. (13)

The multigroup LOQD equations are discretized in space by a second-order finite volume
(FV) method. The spatial discretization of the grey LOQD equations is algebraically consis-
tent with the discretized multigroup LOQD equations [7]. We refer to the described method
as the MLQD method with BE-SC scheme.

2.2. Approximate Implicit Method for the RTE

In the approximate implicit scheme, the multigroup RTE (4) is discretized by the MBE
time integration scheme given by [5]

1

c∆tn
(
Ing − În−1g

)
+ µ

∂Ing
∂x

+ κn
g I

n
g = Qn

g , (14)

where the grid functions of group intensity În−1g are approximated by the low-rank POD
of the solution In−1g computed at the time step n − 1. The SC scheme for the high-order

equation (14) is formulated for the cell-edge
(
Ingmj+1/2

)
and cell-average

(
Ingmj

)
angular

fluxes by means of the detailed particle balance equation and weighted auxiliary relation

∆xj
c∆tn

(
Ingmj − În−1gm j

)
+ µm

(
Ingmj+1/2 − Ingmj−1/2

)
+ κn

g jI
n
gmj∆xj = Qn

g j∆xj , (15a)

Ingmj = γngmjI
n
gmj−1/2 + (1− γngmj)I

n
gmj+1/2 , (15b)

γngmj =
1

τngmj

− 1

eτ
n
gm j − 1

, τngmj =
1

µm

(
κn
g j + (c∆tn)−1

)
∆xj , (15c)

where m ∈ N(M) is the index of angular direction, j ∈ N(J) is the index of the spatial
interval, ∆xj is the width of the j-th cell. We refer to the discretized RTE (15) as the
MBE-SC scheme.

3. Approximation of the Specific Intensity

3.1. POD of the Intensity

The MBE-SC scheme (Eqs. (15)) needs to store the cell-average intensity Ingmj. In each
photon frequency group, it is a 2D discrete grid function of j and m. We interpret it in
a matrix form defined by AI = [I1 . . . IM ]

(
AI ∈ RJ×M), where the columns are given by

Im = [Im 1 . . . ImJ ]T
(
Im ∈ RJ

)
. Here we omitted group and time indices for the sake

of brevity. We approximate the grid function of the group cell-average intensity by the
low–rank POD [9, 10]. The reduced singular value decomposition (SVD) of AI has the
form:

AI = UIΛIV
T
I . (16)
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ΛI = diag(λ1 . . . λd) ∈ Rd×d is the diagonal matrix of singular values, where

d = min(J,M) (17)

is the rank of AI . UI = [u1 . . .ud] and VI = [v1 . . .vd] are the matrices of left and right
singular vectors, respectively, where u` ∈ RJ and v` ∈ RM . The approximate group intensity
Îm = [Îm 1 . . . ÎmJ ]T is defined by the low-rank POD of AI given by

ÂrI =
r∑
`=1

λ`u` ⊗ (v`)
T , r < d , where ÂrI = [Î1 . . . ÎM ] . (18)

This is the optimal approximation of the matrix AI in the 2-norm [10, 14]. The low-rank
approximation (18) requires storage of the first r singular values and associated left and right
singular vectors. Thus, this approximation leads to memory allocation of a data set with the
number of elements
r(J +M + 1) in each group. The rank can be chosen according to various criteria.

3.2. POD of the Remainder Term

We cast the intensity as its P2 approximation and the remainder term defined by

∆Imj = Imj −
1

2

(
φ̃j + 3µmF̃j +

5

4

(
3µ2

m − 1
)(

3fj − 1
)
φ̃j

)
, (19)

where the P2 expansion coefficients are calculated by the solution of the high-order RTE,
namely,

φ̃j =
M∑
m=1

Imjwm , F̃j =
M∑
m=1

µmImjwm , fj =

∑M
m=1 µ

2
mImjwm∑M

m=1 I
n
mjwm

. (20)

The discrete 2D function ∆Imj is treated as a matrix defined by ∆AI = [∆I1 . . .∆IM ],
where ∆Im = [∆Im 1 . . .∆ImJ ]T . Its POD is given by

∆AI = U ′IΛ
′
I(V

′
I )
T . (21)

where Λ′I = diag(λ′1 . . . λ
′
d) ∈ Rd×d, U ′I = [u′1 . . .u

′
d], V

′
I = [v′1 . . .v

′
d], u′` ∈ RJ , and v′` ∈ RM .

We apply the low-rank POD

∆ÂrI = [∆Î1 . . .∆ÎM ] =
r∑

k=1

λ′ku
′
k ⊗ (v′k)

T , r < d , ∆Îm = [∆Îm 1, . . . ,∆ÎmJ ]T (22)

to define approximate intensities as the sum of its P2 approximation and the POD of the
remainder term

Îmj =
1

2

(
φ̃j + 3µmF̃j +

5

4

(
3µ2

m − 1
)(

3fnj − 1
)
φ̃j

)
+ ∆Îmj . (23)

This approximation needs to store in memory r(J + M + 1) + 2J elements that includes
(i) r(J + M + 1) elements for the remainder term and (ii) 2J elements for vectors of two
angular moments φ̃ and F̃ .
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4. Numerical Results

We present numerical results of the Fleck-Cummings (F-C) test [15]. The spatial do-
main (0 ≤ x ≤ 6) contains one material. The spectral opacity of the material is given by

κν = 27
(hν)3

(
1−e− hν

kT

)
. There is incoming radiation with black-body spectrum Bν at tempera-

ture kTin = 1 keV at the left boundary. The right boundary is vacuum. The initial tempera-
ture of the slab is kT0 = 1 eV. At t = 0 the radiation intensity in the slab has the black-body
spectrum at T0. The material energy density is ε = cνT , where cν = 0.5917aRT

3
in. The prob-

lem is solved over the time interval 0 ≤ t ≤ 6 ns. The time step size is ∆t = 2 × 10−2 ns.
The uniform spatial mesh consists of J = 100 cells. The angular mesh has 8 discrete direc-
tions (M = 8). The double S4 Gauss-Legendre quadrature set is used. We define G = 17
energy groups. The parameters of convergence criteria for temperature and energy density
are εT = εE = 10−12, respectively.

The discrete solution of the MLQD method with the MBE-SC scheme, namely, the total
radiation energy density Er

h and temperature T rh of the approximate implicit method with
the rank r POD is compared to the discrete solution Th and Eh of the MLQD method with
the BE-SC scheme on the corresponding grid in the phase space and time. The numerical
results of the method with the POD of the intensity of the rank r in all groups are presented
in Figure 1. The plots show the relative error in reproducing the discrete solution in ∞-

norm, namely,
||Th−T rh ||∞
||Th||∞

and
||Eh−Erh||∞
||Eh||∞

for the complete range of r. The results obtained
with the MBE-SC scheme using the POD of the rank r of the remainder term in each group
are shown in Figure 2. In this test, the full rank d (Eq. (17)) equals 8. The results with
the full-rank POD (r = 8) of both methods illustrate that they accurately reproduce the
discrete solution of the MLQD method with the SC scheme on the given grid as expected.
In case r = 5, 6, 7 the solution of the method with the POD of the remainder term has very
small error. This is due to explicit accounting for the first three Legendre moments of the
intensity (Eq. (23)). The singular eigenvalues λ′` for ` = 5, 6, 7 in groups are very small.
In this test problem, the method with POD of the remainder term is predominantly more
accurate than to the method with POD of the intensity for the given rank r. However,
it uses more data for the rank r. Figure 3 shows the ratio between errors of the method
with the POD of the remainder term (POD-RT) and the one with the POD of the intensity
(POD-I).

The gains in memory allocation depend on both the number of spatial cells J and angular
directions M and hence are problem specific. For the phase-space grid used in the test, the
size of the data set stored by this MLQD method with the RTE discretized the BE-SC
scheme at the end of each time step is D = G(J ×M + 2 × J + 1) + 2 × J + 1 = 17218.
This includes the data for (i) the multigroup RTE, (ii) the multigroup and grey LOQD
equations, and (iii) the MEB equation. Table 1 shows the percentage reduction of required
data storage sizes of the MLQD method with each of the two versions of the MBE-SC scheme
compared to that of the MLQD method with the BE-SC scheme. Negative values indicate
an increase in storage compared to the BE-SC scheme. In this test, the method with POD
of intensities shows gains in memory for all ranks, i.e. r = 1, . . . , 7. The method with POD
of the remainder term reduces memory allocation for r = 1, . . . , 5.
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(a)
||Th−T r

h ||∞
||Th||∞ . (b)

||Eh−Er
h||∞

||Eh||∞ .

Figure 1: Relative error in ∞-norm of the solution of the MLQD method with the MBE-SC scheme and
POD of the intensity compared to the discrete solution on the corresponding grid in phase space and time.

(a)
||Th−T r

h ||∞
||Th||∞ . (b)

||Eh−Er
h||∞

||Eh||∞ .

Figure 2: Relative error in ∞-norm of the solution of the MLQD method with the MBE-SC scheme and
POD of the remainder term compared to the discrete solution on the corresponding grid in phase space and
time.

Figures 4 and 5 present the results of spatial mesh refinement for the fixed time step size
∆t = 2×10−2 ns. They show the relative error of E in ∞-norm for uniform meshes with
∆x = 0.24, 0.12, 0.06, 0.03 cm. The number of degrees of freedom of the discrete intensity
increases with refinement of spatial mesh. The results show that the change in the relative
error decreases with refinement. The factor of change on fine meshes approaches one. This
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(a)
||Th−T r

h ||
POD-RT
∞

||Th−T r
h ||POD-I

∞
. (b)

||Eh−Er
h||

POD-RT
∞

||Eh−Er
h||POD-I

∞
.

Figure 3: The error of the method with POD of the remainder term (POD-RT) over the error of the method
with POD of intensity (POD-I).

Table 1: Reduction [%] in memory storage of previous step data of the MLQD method with the MBE-SC
scheme (J=100, M=8).

Rank (r) 1 2 3 4 5 6 7

POD-I 68.2 57.5 46.7 35.9 25.2 14.4 3.7

POD-RT 48.5 37.7 27.0 16.2 5.4 -5.3 -16.1

indicates that the error due to low-rank POD of data representing intensities tends to a
limit as ∆x → 0 for the fixed time step ∆t. Figures 6 and 7 present the relative error of
E in ∞-norm for the numerical solution computed with refined time steps (∆t = 4×10−2,
2×10−2, 10−2, 5×10−3 ns) on the spatial mesh with ∆x = 6×10−2 cm. These results show
increase in the relative error in reproducing the discrete solution on the given grids. More
analysis is needed to study properties of the methods.

5. Conclusions

This paper presented implicit methods with approximate time evolution operator in
the high-order Boltzmann equation and reduced memory for TRT problems. The obtained
results showed that the proposed methods reproduce the numerical solution of the underlying
discretization method on the given phase-space grid with various degrees of accuracy while
reducing storage of data between time steps. The accuracy depends on the rank of the POD
of the data representing intensity from the previous time level. It is possible to achieve
accuracy that is good for practical routine simulations and significantly reduce memory
usage. There are extra computational costs due to calculations of the POD of intensities.
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(a)
||Eh−Er

h||∞
||Eh||∞ at t = 0.4 ns (b)

||Eh−Er
h||∞

||Eh||∞ at t = 1 ns (c)
||Eh−Er

h||∞
||Eh||∞ at t = 6 ns

Figure 4: Results of refinement of spatial mesh for the MLQD method with the MBE-SC scheme and POD
of the intensity for ∆t = 2× 10−2.

(a)
||Eh−Er

h||∞
||Eh||∞ at t = 0.4 ns (b)

||Eh−Er
h||∞

||Eh||∞ at t = 1 ns (c)
||Eh−Er

h||∞
||Eh||∞ at t = 6 ns

Figure 5: Results of spatial mesh refinement for the MLQD method with the MBE-SC scheme and POD of
the remainder term for ∆t = 2× 10−2 ns.

The proposed approximate implicit methods are intended for computer architectures on
which one can take advantage of extra computations for reduction of memory storage. The
proposed approach can be applied to various time integration methods and different kind of
transport problems.
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(a)
||Eh−Er

h||∞
||Eh||∞ at t = 0.4 ns (b)

||Eh−Er
h||∞

||Eh||∞ at t = 1 ns (c)
||Eh−Er

h||∞
||Eh||∞ at t = 6 ns

Figure 6: Results of time step refinement the MLQD method with the MBE-SC scheme and POD of the
intensity ∆x = 6× 10−2 cm.

(a)
||Eh−Er

h||∞
||Eh||∞ at t = 0.4 ns (b)

||Eh−Er
h||∞

||Eh||∞ at t = 1 ns (c)
||Eh−Er

h||∞
||Eh||∞ at t = 6 ns

Figure 7: Results of time step refinement the MLQD method with the MBE-SC scheme and POD of the
remainder term for ∆x = 6× 10−2 cm.
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